PYSCAFFOLD

PyScaffold Documentation
Release 4.2.3

PyScaffold Contributors

Jun 17, 2022






CONTENTS

Installation 3
1.1 Requirements . . . . . . . o o it e e e e e e e e e e e e e 3
1.2 Installation . . . . . . . oL e e e e e e e e 3
1.3 Alternative Methods . . . . . . . . . . e e 4
1.4 Additional Requirements . . . . . . . . . . . L e e e e e e e e e e 4
Features 5
2.1  Configuration, Packaging & Distribution . . . . . . . ... .. ... o o 5
2.2 Versioning and Git Integration . . . . . . . . . . . L e e e e e 7
2.3 Sphinx Documentation . . . . . . . . . ... e e e e e e e e e e e e e 7
24 Dependency ManagementinaBreeze . . . . . . . . . ... L L oo oo 8
2.5 Automation, Tests & COVETage . . . . . . . . o v v i i it it e e e e e e e e e e e 8
2.6  Management of Requirements & Licenses . . . . . . . . . .. ..o oo oo 9
2.7 EXtensions . . . . ... .. e e e e e 10
2.8  EasyUpdating . . . . . . . o o e e e e e e e e 10
2.9 PyScaffold Configuration . . . . . . . . . . L e e 10
Usage & Examples 11
3.1 QuickStart .. .. e e e e e e e e e e e 11
3.2 EXamples . . . oo e e e e e e e e e e e e e 12
3.3 Package Configuration . . . . . . . . . . . e 13
3.4 PyScaffold’s Own Configuration . . . . . . . . . . . . . 0t e 16
Advanced Usage & Features 17
4.1 Dependency Management . . . . . . . . . oot i i e e e e e e e e e e e e e e 17
4.2 Migrationto PyScaffold . . . . . . . . . L 23
4.3  Updating from Previous Versions . . . . . . . . . . . i i v i i it e e e e e e 23
4.4  Extending PyScaffold . . . . . . . . . . e e 25
Why PyScaffold? 35
Frequently Asked Questions 37
6.1 Pyscaffold Usage . . . . . . . . . . e 37
6.2  File Organisation and Directory Structure . . . . . . . . . . .. .. ... e 40
6.3 NamMESPACES . . . v v v v e e e e e e e e e e e e e e e e e e e e e e 40
6.4 pyproject.toml . . . L. L e e e e e e e e e e e e e e 41
6.5 Best Practices and Common Errors with Version Numbers . . . . . . . ... ... .. ... ..... 42
Contributing 45
7.1  How to contribute to PyScaffold? . . . . . . . . . . . . 45




8

9

Developer Guide

8.1 Architecture . . . . . . . . . . e e e
8.2  Project Structure Representation . . . . . . . . . ... L e
83 ActionPipeline . . . . . . .. e
84 EXensions . . . . . . .. e e e e e e e e
8.5 Code base Organization . . . . . . . . . . . . it e e e e e e e e
Contributors

10 Changelog

10.1 Current versions
10.2 Older versions

11 License

12 pyscaffold

12.1 pyscaffold package . . . . . . . . L e e e e e

13 Indices and tables

Python Module Index

Index

53
53
53
55
55
56

57

59
59
59

75

77
77

119

121

123




PyScaffold Documentation, Release 4.2.3

PYSCAFFOLD

PyScaffold is a project generator for bootstrapping high-quality Python packages, ready to be shared on PyPI and
installable via pip. It is easy to use and encourages the adoption of the best tools and practices of the Python ecosystem,
helping you and your team to stay sane, happy and productive. The best part? It is stable and has been used by thousands
of developers for over half a decade!

Note: This document refers to the latest version of PyScaffold (v4). Please refer to v3.3 for the previous stable version.
Both versions are compatible with Python 3.6 and greater.

For legacy Python 2.7 please install PyScaffold 2.5 (not officially supported).

CONTENTS 1


https://pypi.org/
https://pip.pypa.io/en/stable/
https://pyscaffold.org/en/v3.3.x/

PyScaffold Documentation, Release 4.2.3

2 CONTENTS



CHAPTER
ONE

INSTALLATION

1.1 Requirements

The installation of PyScaffold only requires a recent version of of setuptools, (at least version 46.1), pip, as well as a
working installation of Git (meaning at least your name and email were configured but also setting the default branch
might be useful in your first-time git setup). Especially Windows users should make sure that the command git is
available on the command line. Otherwise, check and update your PATH environment variable or run PyScaffold from
the Git Bash.

Tip: It is recommended to use an isolated development environment as provided by virtualenv or conda for your
work with Python in general. You might want to install PyScaffold globally in your system, but consider using virtual
environments when developing your packages.

1.2 Installation

PyScaffold relies on a Python package manager for its installation. The easiest way of getting started is via our loved
pip. Make sure you have pip installed', then simply type:

pip install --upgrade pyscaffold

to get the latest stable version. The most recent development version can be installed with:

pip install --pre --upgrade pyscaffold

Using pip also has the advantage that all requirements are automatically installed.

If you want to install PyScaffold with all official extensions, run:

pip install --upgrade pyscaffold[all]

! In some operating systems, e.g. Ubuntu, this means installing a python3-pip package or similar via the OS’s global package manager.



https://pypi.org/project/setuptools/
https://pip.pypa.io/en/stable/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
https://realpython.com/python-virtual-environments-a-primer/
https://virtualenv.pypa.io/en/stable/
https://docs.conda.io/en/latest/
https://pip.pypa.io/en/stable/

PyScaffold Documentation, Release 4.2.3

1.3 Alternative Methods

It is very easy to get PyScaffold installed with pip, but some people do prefer other package managers such as conda
while doing their work.

If you do lots of number crunching or data science in general® and you already rely on conda-forge packages, you might
also use the following method:

conda install -c conda-forge pyscaffold

It is also very common for developers to have more then one Python version installed on their machines, and a plethora
of virtual environments spread all over the place... Instead of constantly re-installing PyScaffold in each one of these
installations and virtual environments, you can use pipx to do a “minimally-invasive” system-wide installation and have
the putup command always available independently of which Python you are using:

pipx install pyscaffold

Please check the documentation of each tool to understand how they work with extra requirements (e.g. [all]) or how
to add extensions (e.g. pipx inject pyscaffold pyscaffoldext-dsproject).

1.4 Additional Requirements

We strongly recommend installing tox together with PyScaffold (both can be installed with pip, conda or pipx), so you
can take advantage of its automation capabilities and avoid having to install dependencies/requirements manually. If
you do that, just by running the commands tox and tox -e docs, you should able to run your tests or build your docs
out of the box (a list with all the available tasks is obtained via the tox -av command).

If you dislike tox, or are having problems with it, you can run commands (like pytest and make -C docs) manually
within your project, but then you will have to deal with additional requirements and dependencies yourself. It might
be the case you are already have them installed but this can be confusing because these packages won’t be available
to other packages when you use a virtual environment. If that is the case, just install following packages inside the
environment you are using for development:

¢ Sphinx

* pytest

* pytest-cov

Note: If you have problems using PyScaffold, please make sure you are using Python 3.6 or greater.

2 conda is a very competent package manager for Python, not only when you have to deal with numbers. In general, when you rely on native
extensions, hardware acceleration or lower level programming languages integration (such as C or C++), conda might just be the tool you are looking
for.

4 Chapter 1. Installation



https://pip.pypa.io/en/stable/
https://docs.conda.io/en/latest/
https://anaconda.org/conda-forge/pyscaffold
https://pipxproject.github.io/pipx/
https://tox.wiki/en/stable/
https://pip.pypa.io/en/stable/
https://docs.conda.io/en/latest/
https://pipxproject.github.io/pipx/
https://tox.wiki/en/stable/
https://www.sphinx-doc.org/en/master/
https://docs.pytest.org/en/stable/
https://pypi.org/project/pytest-cov
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/

CHAPTER
TWO

FEATURES

PyScaffold comes with a lot of elaborated features and configuration defaults to make the most common tasks in
developing, maintaining and distributing your own Python package as easy as possible.

2.1 Configuration, Packaging & Distribution

All configuration can be done in setup.cfg like changing the description, URL, classifiers, installation requirements
and so on as defined by setuptools. That means in most cases it is not necessary to tamper with setup . py. The syntax of
setup.cfg is pretty much self-explanatory and well commented, check out this example or setuptools’ documentation.

If you use tox, PyScaffold will already configure everything out of the box' so you can easily build your distribution,
in a PEP 517/PEP 518 compliant way, by just running:

tox -e build

Alternatively, if you are not a huge fan of isolated builds, or prefer running the commands yourself, you can execute
python -m build --no-isolation.

2.1.1 Uploading to PyPI

Of course uploading your package to the official Python package index PyPI for distribution also works out of the box.
Just create a distribution as mentioned above and use tox to publish with:

tox -e publish

This will first upload your package using TestPyPI, so you can be a good citizen of the Python world, check/test every-
thing is fine, and then, when you are absolutely sure the moment has come for your package to shine, you can go ahead
and run tox -e publish -- --repository pypi’. Just remember that for this to work, you have to first register
a PyPI account (and also a TestPyPI one).

Under the hood, tox uses twine for uploads to PyPI (as configured by PyScaffold in the tox.ini file), so if you prefer
running things yourself, you can also do:

pip install twine
twine upload --repository testpypi dist/*

! Tox is a virtual environment management and test tool that allows you to define and run custom tasks that call executables from Python packages.
In general, PyScaffold will already pre-configure tox to do the most common tasks for you. You can have a look on what is available out of the box
by running tox -av, or go ahead and check tox docs to automatise your own tasks.

2 The verbose command is intentional here to prevent later regrets. Once a package version is published to PyPI, it cannot be replaced. Therefore,
be always sure your are done and all set before publishing.



https://setuptools.pypa.io/en/stable/setuptools.html
https://setuptools.pypa.io/en/stable/userguide/declarative_config.html
https://tox.wiki/en/stable/
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0518/
https://pypi.org/
https://tox.wiki/en/stable/
https://packaging.python.org/guides/using-testpypi/
https://pypi.org/
https://test.pypi.org/
https://tox.wiki/en/stable/
https://twine.readthedocs.io/en/stable/
https://pypi.org/
https://towardsdatascience.com/virtual-environments-104c62d48c54
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/

PyScaffold Documentation, Release 4.2.3

Please notice that PyPI does not allow uploading local versions, e.g. 8.0.dev5+gc5da6ad, for practical reasons. Thus,
you have to create a Git tag before uploading a version of your distribution. Read more about it in the versioning section
below.

Warning: Old guides might mention python setup.py upload, but its use is strongly discouraged nowadays
and even some of the new PyPI features won’t work correctly if you don’t use twine.

2.1.2 Namespace Packages

If you want to work with namespace packages, you will be glad to hear that PyScaffold supports the PEP 420 specifica-
tion for implicit namespaces, which is very useful to distribute a larger package as a collection of smaller ones. putup
can automatically setup everything you need with the --namespace option. For example, use:

putup my_project --package my_package --namespace com.my_domain

to define my_package inside the namespace com.my_domain, Java-style.

Note: Prior to PyScaffold 4.0, namespaces were generated explicitly with pkg_resources, instead of PEP 420. More-
over, if you are developing “subpackages” for already existing namespaces, please check which convention the names-
paces are currently following. Different styles of namespace packages might be incompatible. If you don’t want to
update existing namespace packages to PEP 420, you will probably need to manually copy the __init__.py file for
the umbrella namespace folder from an existing project. Additionally have a look in our FAQ about how to disable
implicit namespaces.

2.1.3 Package and Files Data

Additional data, e.g. images and text files, that must reside within your package, e.g. under my_project/src/
my_package, and are tracked by Git will automatically be included if include_package_data = True in setup.
cfg. In case that data files are not packaged, use git 1s-files to debug if they are really tracked by Git. It is not
necessary to have a MANIFEST. in file for this to work. Just make sure that all files are added to your repository. To
read this data in your code, use:

from pkgutil import get_data
data = get_data('my_package', 'path/to/my/data.txt')

Starting from Python 3.7 an even better approach is using importlib.resources:

from importlib.resources import read_text, read_binary
data = read_text('my_package.sub_package', 'data.txt')

Note that we need a proper package structure in this case, i.e. directories need to contain __init__.py and be named
as a valid Python package (which follow the same rules as variable names). We only specify the file data. txt, no
path is allowed. The library importlib_resources provides a backport of this feature.

Please have in mind that the include_package_data option in setup. cfg is only guaranteed to be read when creat-
ing a wheels distribution. Other distribution methods might behave unexpectedly (e.g. always including data files even
when include_package_data = False). Therefore, the best option if you want to have data files in your repository
but not as part of the pip installable package is to add them somewhere outside the src directory (e.g. a files
directory in the root of the project, or inside tests if you use them for checks). Additionally you can exclude them

6 Chapter 2. Features



https://pypi.org/
https://pypi.org/
https://twine.readthedocs.io/en/stable/
https://packaging.python.org/guides/packaging-namespace-packages/
https://www.python.org/dev/peps/pep-0420/
https://setuptools.pypa.io/en/stable/pkg_resources.html
https://www.python.org/dev/peps/pep-0420/
https://packaging.python.org/guides/packaging-namespace-packages/
https://www.python.org/dev/peps/pep-0420/
https://docs.python.org/3/library/importlib.html#module-importlib.resources
https://importlib-resources.readthedocs.io/en/stable/
https://realpython.com/python-wheels/

PyScaffold Documentation, Release 4.2.3

explicitly via the [options.packages.find] exclude option in setup.cfg. More information about data files
support is available on the setuptools website.

Tip: Using package files to store runtime configuration or mutable data is not considered good practice. Package files
should be read-only. If you need configuration files, or files that should be written at runtime, please consider doing
so inside standard locations in the user’s home folder (platformdirs is a good library for that). If needed you can even
create them at the first usage from a read-only template, which in turn can be a package file.

2.2 Versioning and Git Integration

Your project is already an initialised Git repository and setuptools uses the information of tags to infer the version of
your project with the help of setuptools_scm. To use this feature you need to tag with the format MAJOR.MINOR[ .
PATCH] ,e.g. 0.0.10r0.1.

You can run python -m setuptools_scm to retrieve the current PEP 440-compliant version*. This version will
be used when building a package and is also accessible through my_project.__version__. If you want to upload
to PyPI you have to tag the current commit before uploading since PyPI does not allow local versions, e.g. 0.0.
dev5+gc5da6ad, for practical reasons.

Please check our docs for the best practices and common errors with version numbers.

2.2.1 Pre-commit Hooks

Unleash the power of Git by using its pre-commit hooks. This feature is available through the --pre-commit flag.
After your project’s scaffold was generated, make sure pre-commit is installed, e.g. pip install pre-commit, then
just run pre-commit install.

It goes unsaid that also a default .gitignore file is provided that is well adjusted for Python projects and the most
common tools.

2.3 Sphinx Documentation

PyScaffold will prepare a docs directory with all you need to start writing your documentation. Start editing the file
docs/index.rst to extend the documentation and note that even the Numpy and Google style docstrings are activated
by default.

If you have tox in your system, simply run tox -e docsor tox -e doctests tocompile the docs or run the doctests.

Alternatively, if you have make and Sphinx installed in your computer, build the documentation with make -C docs
html and run doctests with make -C docs doctest. Just make sure Sphinx 1.3 or above is installed.

The documentation also works with Read the Docs. Please check the RTD guides to learn how to import your documents
into the website.

Note: In order to generate the docs locally, you will need to install any dependency used to build your doc files (and
probably all your project dependencies) in the same Python environment where Sphinx is installed (either the global
Python installation or a conda/virtualenv/venv environment). For example, if you want to use the Read the Docs classic
theme, the sphinx_rtd_theme package should be installed.

4 Requires setuptools-scmto be installed (pip install setuptools_scm)

2.2. Versioning and Git Integration 7


https://setuptools.pypa.io/en/latest/userguide/datafiles.html
https://setuptools.pypa.io/en/latest/userguide/datafiles.html
https://pypi.org/project/platformdirs
https://setuptools.pypa.io/en/stable/setuptools.html
https://pypi.org/project/setuptools-scm/
https://www.python.org/dev/peps/pep-0440/
https://pypi.org/
https://pypi.org/
https://pre-commit.com/
https://www.sphinx-doc.org/en/master/usage/extensions/napoleon.html
https://tox.wiki/en/stable/
https://en.wikipedia.org/wiki/Make_(software)
https://www.sphinx-doc.org/en/master/
https://readthedocs.org/
https://docs.readthedocs.io/en/stable/intro/import-guide.html
https://www.sphinx-doc.org/en/master/
https://readthedocs.org/

PyScaffold Documentation, Release 4.2.3

If you are using tox -e docs, tox will take care of generating a virtual environment and installing all these dependen-
cies automatically. You will only need to list your doc dependencies (like sphinx_rtd_theme) under the deps property
of the [testenv: {docs,doctests}] section in the tox.ini file. Your can also use the docs/requirements.txt
file to store them. This file can be used by both Read the Docs and tox when generating the docs.

2.4 Dependency Management in a Breeze

PyScaffold out of the box allows developers to express abstract dependencies and take advantage of pip to manage
installation. It also can be used together with a virtual environment (also called virtual env) to avoid dependency hell
during both development and production stages.

If you like the traditional style of dependency management using a virtual env co-located with your package, PyScaffold
can help to reduce the boilerplate. With the --venv option, a virtualenv will be bootstrapped and waiting to be activated.
And if you are the kind of person that always install the same packages when creating a virtual env, PyScaffold’s option
--venv-install PACKAGE will be the right one for you. You can even integrate pip-tools in this workflow, by putting
a-e file:. in your requirements.in.

Alternatively, PyPA’s Pipenv can be integrated in any PyScaffold-generated project by following standard setuptools
conventions. Keeping abstract requirements in setup.cfg and running pipenv install -e . isbasically what you
have to do.

You can check the details on how all of that works in Dependency Management.

Warning: Experimental Feature - Pipenv and pip-tools support is experimental and might change in the future.

2.5 Automation, Tests & Coverage

PyScaffold relies on pytest to run all automated tests defined in the subfolder tests. Some sane default flags for pytest
are already defined in the [tool :pytest] section of setup.cfg. The pytest plugin pytest-cov is used to automatically
generate a coverage report. It is also possible to provide additional parameters and flags on the commandline, e.g., type:

pytest -h

to show the help of pytest (requires pytest to be installed in your system or virtual environment).

2.5.1 JUnit and Coverage HTML/XML

For usage with a continuous integration software JUnit and Coverage XML output can be activated in setup.cfg.
Use the flag --cirrus to generate templates of the Cirrus CI configuration file . cirrus.yml which even features the
coverage and stats system Coveralls. Alternatively, you can also generate configuration files for GitLab CI or GitHub
Actions by running putup with the --gitlab or --github-actions flags.

8 Chapter 2. Features



https://tox.wiki/en/stable/
https://readthedocs.org/
https://tox.wiki/en/stable/
https://towardsdatascience.com/virtual-environments-104c62d48c54
https://en.wikipedia.org/wiki/Dependency_hell
https://github.com/jazzband/pip-tools/
https://pypi.org/project/pipenv/
https://setuptools.pypa.io/en/stable/setuptools.html
https://docs.pytest.org/en/stable/
https://github.com/pytest-dev/pytest-cov
https://docs.pytest.org/en/stable/
https://towardsdatascience.com/virtual-environments-104c62d48c54
https://cirrus-ci.org/
https://coveralls.io/
https://docs.gitlab.com/ee/ci/
https://github.com/features/actions
https://github.com/features/actions

PyScaffold Documentation, Release 4.2.3

2.5.2 Managing test environments and tasks with tox

Projects generated with PyScaffold are configured by default to use tox to run some common tasks. Tox is a virtual
environment management and test tool that allows you to define and run custom tasks that call executables from Python
packages.

If you simply install tox and run from the root folder of your project:

tox

tox will download the dependencies you have specified, build the package, install it in a virtual environment and run
the tests using pytest, so you are sure everything is properly tested. You can rely on the tox documentation for detailed
configuration options (which include the possibility of running the tests for different versions of Python).

You are not limited to running your tests, with tox you can define all sorts of automation tasks. Here are a few examples
for you:

tox -e build # will bundle your package and create a distribution inside the ‘dist'.
—folder

tox -e publish # will upload your distribution to a package index server

tox -e docs # will build your docs

but you can go ahead and check tox examples, or this tox tutorial from Sean Hammond for more ideas, e.g. running
static code analyzers (pyflakes and pep8) with flake8. Run tox -av to list all the available tasks.

2.6 Management of Requirements & Licenses

Installation requirements of your project can be defined inside setup.cfg, e.g. install_requires = numpy;
scipy. To avoid package dependency problems it is common to not pin installation requirements to any specific
version, although minimum versions, e.g. sphinx>=1.3, and/or maximum versions, e.g. pandas<®.12, are used
frequently in accordance with semantic versioning.

For test/dev purposes, you can additionally create a requirements.txt pinning packages to specific version, e.g.
numpy==1.13.1. This helps to ensure reproducibility, but be sure to read our Dependency Management Guide to
understand the role of a requirements. txt file for library and application projects (pip-compile from pip-tools
can help you to manage that file). Packages defined in requirements.txt can be easily installed with:

pip install -r requirements.txt

The most popular open source licenses can be easily added to your project with the help of the --1icense flag. You
only need to specify the license identifier according to the SPDX index so PyScaffold can generate the appropriate
LICENSE. txt and configure your package. For example:

putup --license MPL-2.0 my_project

will create the my_project package under the Mozilla Public License 2.0 The available licenses can be listed with
putup --help, and you can find more information about each license in the SPDX index and choosealicense.com.

2.6. Management of Requirements & Licenses 9



https://tox.wiki/en/stable/
https://towardsdatascience.com/virtual-environments-104c62d48c54
https://towardsdatascience.com/virtual-environments-104c62d48c54
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://docs.pytest.org/en/stable/
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/examples.html
https://www.seanh.cc/2018/09/01/tox-tutorial/
https://flake8.pycqa.org/en/stable/
https://semver.org
https://github.com/jazzband/pip-tools/
https://spdx.org/licenses/
https://choosealicense.com/licenses/mpl-2.0/
https://spdx.org/licenses/
https://choosealicense.com/appendix/

PyScaffold Documentation, Release 4.2.3

2.7 Extensions

PyScaffold offers several extensions:

* If you want a project setup for a Data Science task, just use --dsproject after having installed pyscaffoldext-
dsproject.

* Have a README .md based on Markdown instead of README.rst by using --markdown after having installed
pyscaffoldext-markdown.

e Create a Django project with the flag --django which is equivalent to django-admin startproject
my_project enhanced by PyScaffold’s features (requires pyscaffoldext-django).

¢ ... and many more like --gitlab to create the necessary files for GitLab CI, --github-actions to config-
ure GitHub Actions, --travis for Travis CI (see pyscaffoldext-travis), or --cookiecutter for Cookiecutter
integration (see pyscaffoldext-cookiecutter).

Find more extensions within the PyScaffold organisation and consider contributing your own, it is very easy! You
can quickly generate a template for your extension with the --custom-extension option after having installed
pyscaffoldext-custom-extension. Have a look in our guide on writing extensions to get started.

All extensions can easily be installed with pip install pyscaffoldext-NAME.

2.8 Easy Updating

Keep your project’s scaffold up-to-date by applying putup --update my_project when a new version of PyScaffold
was released. Anupdate will only overwrite files that are not often altered by users like setup . py. To update all files use
--update --force. An existing project that was not setup with PyScaffold can be converted with putup --force
existing_project. The force option is completely safe to use since the git repository of the existing project is not
touched! Please check out the Updating from Previous Versions docs for more information on how to migrate from old
versions and configuration options in setup.cfg.

2.8.1 Adding features

With the help of an experimental updating functionality it is also possible to add additional features to your existing
project scaffold. If a scaffold lacking .cirrus.yml was created with putup my_project it can later be added by
issuing putup my_project --update --cirrus. For this to work, PyScaffold stores all options that were initially
used to put up the scaffold under the [pyscaffold] section in setup.cfg. Be aware that right now PyScaffold
provides no way to remove a feature which was once added.

2.9 PyScaffold Configuration

After having used PyScaffold for some time, you probably will notice yourself repeating the same options most of
the time for every new project. Don’t worry, PyScaffold now allows you to set default flags using the experimental
default.cfg file’. Check out our Configuration section to get started.

3 Experimental features can change the way they work (or be removed) between any releases. If you are scripting with PyScaffold, please avoid
using them.

10 Chapter 2. Features


https://github.com/pyscaffold/pyscaffoldext-dsproject
https://github.com/pyscaffold/pyscaffoldext-dsproject
https://github.com/pyscaffold/pyscaffoldext-markdown
https://www.djangoproject.com/
https://github.com/pyscaffold/pyscaffoldext-django
https://docs.gitlab.com/ee/ci/
https://github.com/features/actions
https://docs.travis-ci.com
https://github.com/pyscaffold/pyscaffoldext-travis
https://cookiecutter.readthedocs.io/en/stable/
https://github.com/pyscaffold/pyscaffoldext-cookiecutter
https://github.com/pyscaffold/
https://github.com/pyscaffold/pyscaffoldext-custom-extension

CHAPTER
THREE

USAGE & EXAMPLES

3.1 Quickstart

A single command is all you need to quickly start coding like a Python rockstar, skipping all the difficult and tedious
bits:

putup my_project

This will create a new folder called my_project containing a perfect project template with everything you need for
getting things done. Checkout out this demo project, which was set up using Pyscaffold.

Tip: New in version 4.0: We are trying out a brand new interactive mode that makes it even easier to use PyScaffold
in its full potential. If you want to give it a shot, use the --interactive, or simply -i option.

The interactive command equivalent to the previous example is: putup -i my_project.

You can cd into your new project and interact with it from the command line after creating (or activating) an isolated
development environment (with virtualenv, conda or your preferred tool), and performing the usual editable install:

pip install -e .

. all set and ready to go! Try the following in a Python shell:

>>> from my_project.skeleton import fib
>>> £ib(10)
55

Or if you are concerned about performing package maintainer tasks, make sure to have tox installed and see what we
have prepared for you out of the box:

tox -e docs # to build your documentation

tox -e build # to build your package distribution

tox -e publish # to test your project uploads correctly in test.pypi.org
tox -e publish -- --repository pypi # to release your package to PyPI
tox -av # to list all the tasks available

The following figure demonstrates the usage of putup with the new experimental interactive mode for setting up a
simple project. It uses the —cirrus flag to add CI support (via Cirrus CI), and tox to run automated project tasks like
building a package file for distribution (or publishing).

11



https://github.com/pyscaffold/pyscaffold-demo
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://virtualenv.pypa.io/en/stable/
https://docs.conda.io/en/latest/
https://pip.pypa.io/en/stable/cli/pip_install/#editable-installs
https://tox.wiki/en/stable/
https://cirrus-ci.org/
https://tox.wiki/en/stable/
https://asciinema.org/a/qzh5ZYKl1q5xYEnM4CHT04HdW?autoplay=1

PyScaffold Documentation, Release 4.2.3

Type putup -h to learn about other things PyScaffold can do for your project, and if you are not convinced yet, have
a look on these reasons to use PyScaffold.

There is also a video tutorial on how to develop a command-line application with the help of PyScaffold.

3.1.1 Notes

1. PyScaffold’s project template makes use of a dedicated src folder to store all the package files meant for distri-
bution (additional files like tests and documentation are kept in their own separated folders). You can find some
comments and useful links about this design decision in our FAQ.

2. The pip install -e . command installs your project in editable mode, making it available in import state-
ments as any other Python module. It might fail if your have an old version of Python’s package manager and
tooling in your current environment. Please make sure you are using the intended environment (either a virtual
environment [recommended] or the default installation of Python in the operating system) and try to update them
with python -m pip install -U pip setuptools.

3. If you are using a virtual environment, please remember to re-activate it every time you close your shell, oth-
erwise you will not be able to import your project in the REPL. To check if you have already activated it you
can run which python on Linux and OSX, where python on the classical Windows command prompt, or
Get-Command python on PowerShell.

3.2 Examples

Just a few examples to get you an idea of how easy PyScaffold is to use:

putup my_little_project
The simplest way of using PyScaffold. A directory my_little_project is created with a Python package
named exactly the same. The MIT license will be used.

putup -i my_little_project
If you are unsure on how to use PyScaffold, or keep typing putup --help all the time, the experimental
--interactive (or simply -1), is your best friend. It will open your default text editor with a file containing
examples and explanations on how to use putup (think of it as an “editable” --help text, once the file is saved
and closed all the values you leave there are processed by PyScaffold). You might find some familiarities in the
way this option works with git rebase -1i,including the capacity of choosing a different text editor by setting
the EDITOR (or VISUAL) environment variable in your terminal.

putup skynet -1 GPL-3.0-only -d "Finally, the ultimate AI!" -u https://sky.net
This will create a project and package named skynet licensed under the GPL3. The description inside setup . cfg
is directly set to “Finally, the ultimate AI!” and the homepage to https://sky.net.

putup Scikit-Gravity -p skgravity -1 BSD-3-Clause
This will create a project named Scikit-Gravity but the package will be named skgravity with license new-BSD'.

putup youtub --django --pre-commit -d "Ultimate video site for hot tub fans"
This will create a web project and package named youtub that also includes the files created by Django’s
django-admin’. The description in setup.cfg will be set and a file .pre-commit-config.yaml is created
with a default setup for pre-commit.

putup thoroughly_tested --cirrus
This will create a project and package thoroughly_tested with files tox.ini and .cirrus.yml for tox and Cirrus
CL

! Notice the usage of SPDX identifiers for specifying the license in the CLI
2 Requires the installation of pyscaffoldext-django.

12 Chapter 3. Usage & Examples


https://www.youtube.com/watch?v=JwwlRkLKj7o
https://pip.pypa.io/en/stable/cli/pip_install/#editable-installs
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://en.wikipedia.org/wiki/Read%E2%80%93eval%E2%80%93print_loop
https://www.djangoproject.com/
https://pre-commit.com/
https://tox.wiki/en/stable/
https://cirrus-ci.org/
https://cirrus-ci.org/
https://spdx.org/licenses/
https://pyscaffold.org/projects/django/en/stable/

PyScaffold Documentation, Release 4.2.3

putup my_zope_subpackage --name my-zope-subpackage --namespace zope --package subpackage
This will create a project under the my_zope_subpackage directory with the installation name of
my-zope-subpackage (this is the name used by pip and PyPI), but with the following corresponding import
statement:

from zope import subpackage
# zope is the namespace and subpackage is the package name

To be honest, there is really only the Zope project that comes to my mind which is using this exotic feature of
Python’s packaging system. Chances are high, that you will never ever need a namespace package in your life.
To learn more about namespaces in the Python ecosystem, check PEP 420.

3.3 Package Configuration

Projects set up with PyScaffold rely on setuptools, and therefore can be easily configured/customised via setup.cfg.
Check out the example below:

# Docs on setup.cfg:
# http://setuptools.readthedocs.io/en/latest/setuptools.html#configuring-setup-using-
wsetup-cfg-files

[metadatal

name = my_project

description = A test project that was set up with PyScaffold
author = Florian Wilhelm

author_email = Florian.Wilhelm@blue-yonder.com

license = MIT

url = https://...

long_description = file: README.rst

platforms = any

classifiers =
Development Status :: 5 - Production/Stable
Topic :: Utilities
Programming Language :: Python
Programming Language :: Python :: 3
Environment :: Console
Intended Audience :: Developers

License :: OSI Approved :: MIT License
Operating System :: POSIX :: Linux

Operating System :: Unix

Operating System :: MacOS

Operating System :: Microsoft :: Windows
[options]

zip_safe = False
packages = find_namespace:
python_requires = >=3.6
include_package_data = True
package_dir =
=src
# Add here dependencies of your project (semicolon/line-separated)
install_requires =

(continues on next page)

3.3. Package Configuration 13



https://pip.pypa.io/en/stable/
https://pypi.org
https://www.zope.org/
https://www.python.org/dev/peps/pep-0420/
https://setuptools.pypa.io/en/stable/userguide/declarative_config.html

PyScaffold Documentation, Release 4.2.3

(continued from previous page)

pandas
scikit-learn

[options.packages.find]
where = src
exclude =

tests

[options.extras_require]
# Add here additional requirements for extra features, like:
# pdf = ReportLab>=1.2; RXP
# rest = docutils>=0.3; pack ==1.1, ==1.3
all = django; cookiecutter
# Add here test requirements (semicolon/line-separated)
testing =
pytest
pytest-cov

[options.entry_points]
# Add here console scripts like:
# console_scripts =
# script_name = ${package}.module: function
# For example:
#
#
#

console_scripts =
fibonacci = ${package}.skeleton:run
And any other entry points, for example:
# pyscaffold.cli =
# awesome = pyscaffoldext.awesome.extension:AwesomeExtension

[tool:pytest]
# Options for py.test:

# Specify command line options as you would do when invoking py.test directly.
# e.g. --cov-report html (or xml) for html/xml output or --junitxml junit.xml

# in order to write a coverage file that can be read by Jenkins.
addopts =
--cov my_project --cov-report term-missing
--verbose
norecursedirs =
dist
build
.tox
testpaths = tests
markers =
slow: mark tests as slow (deselect with '-m "not slow"')

[bdist_wheel]
universal = 1

[devpi:upload]

# Options for the devpi: PyPI server and packaging tool

# VCS export must be deactivated since we are using setuptools-scm
no_vecs =1

(continues on next page)

14 Chapter 3.

Usage & Examples




PyScaffold Documentation, Release 4.2.3

(continued from previous page)

formats =
sdist
bdist_wheel

[flake8]
# Some sane defaults for the code style checker flake8
max_line_length = 88
extend_ignore = E203, W503
# A Black-compatible
# E203 and W503 have edge cases handled by black
exclude =
.tox
build
dist
.eggs
docs/conf.py

[pyscaffold]
# PyScaffold's parameters when the project was created.
# This will be used when updating. Do not change!
version = 4.0
package = my_package
extensions =
namespace
namespace = nsl.ns2

You might also want to have a look on pyproject.toml for specifying dependencies required during the build:

[build-system]

# AVOID CHANGING REQUIRES: IT WILL BE UPDATED BY PYSCAFFOLD!
requires = ["setuptools>=46.1.0", "setuptools_scm[toml]>=5", "wheel"]
build-backend = "setuptools.build_meta"

[tool.setuptools_scm]

# For smarter version schemes and other configuration options,
# check out https://github.com/pypa/setuptools_scm
version_scheme = "no-guess-dev"

Please note PyScaffold will add some internal information to setup.cfg, we do that to make updates a little smarter.

Note: To avoid splitting the configuration and build parameters among several files, PyScaffold uses the same file as
setuptools (setup.cfg). Storing configuration in pyproject.toml is not supported. In the future, if the default build
metadata location changes (as proposed by PEP 621), PyScaffold will follow the same pattern.

3.3. Package Configuration 15



https://setuptools.pypa.io/en/stable/build_meta.html
https://setuptools.pypa.io/en/stable/userguide/declarative_config.html
https://setuptools.pypa.io/en/stable/build_meta.html
https://www.python.org/dev/peps/pep-0621/

PyScaffold Documentation, Release 4.2.3

3.4 PyScaffold’s Own Configuration

PyScaffold also allows you to save your favourite configuration to a file that will be automatically read every time you
run putup, this way you can avoid always retyping the same command line options.

The locations of the configuration files vary slightly across platforms, but in general the following rule applies:

e Linux: $XDG_CONFIG_HOME/pyscaffold/default.cfg with fallback to ~/.config/pyscaffold/
default.cfg

¢ OSX: ~/Library/Application Support/pyscaffold/default.cfg
e Windows(7): %APPDATA%\pyscaffold\pyscaffold\default.cfg

The file format resembles the setup.cfg generated automatically by PyScaffold, but with only the metadata and
pyscaffold sections, for example:

[metadata]

author = John Doe

author-email = john.joe@gmail.com
license = MPL-2.0

[pyscaffold]

extensions =
cirrus
pre-commit

With this file in place, typing only:

$ putup myproj

will have the same effect as if you had typed:

$ putup --license MPL-2.0 --cirrus --pre-commit myproj

Note: For the time being, only the following options are allowed in the config file:
¢ metadata section: author, author-email and license
« pyscaffold section: extensions (and associated opts)

Options associated with extensions are the ones prefixed by an extension name.

To prevent PyScaffold from reading an existing config file, you can pass the --no-config option in the CLI. You
can also save the given options when creating a new project with the --save-config option. Finally, to read the
configurations from a location other then the default, use the --config PATH option. See putup --help for more
details.

Warning: Experimental Feature - We are still evaluating how this new and exciting feature will work, so its API
(including file format and name) is not considered stable and might change between minor versions. As previously
stated, if the configuration file for setuptools changes (e.g. with PEP 621), PyScaffold will follow that and change
its own configuration.

This means that in future versions, PyScaffold will likely adopt a more pyproject.toml-style configuration (and as a
consequence the file name and extension might change).

16 Chapter 3. Usage & Examples



https://setuptools.pypa.io/en/stable/userguide/declarative_config.html
https://www.python.org/dev/peps/pep-0621/

CHAPTER
FOUR

ADVANCED USAGE & FEATURES

4.1 Dependency Management

Warning: Experimental Feature - PyScaffold support for virtual environment management is experimental and
might change in the future.

4.1.1 Foundations

The greatest advantage in packaging Python code (when compared to other forms of distributing programs and libraries)
is that packages allow us to stand on the shoulders of giants: you don’t need to implement everything by yourself, you
can just declare dependencies on third-party packages and setuptools, pip, PyPI and their friends will do the heavy
lifting for you.

Of course, with great power comes great responsibility. Package authors must be careful when declaring the versions
of the packages they depend on, so the people consuming the final work can do reliable installations, without facing
dependency hell. In the opensource community, two main strategies have emerged in the last few years:

* the first one is called abstract and consists of having permissive, minimal and generic dependencies, with ver-
sions specified by ranges, so anyone can install the package without many conflicts, sharing and reusing as much
as possible dependencies that are already installed or are also required by other packages

* the second, called concrete, consists of having strict dependencies, with pinned versions, so all the users will
have repeatable installations

Both approaches have advantages and disadvantages, and usually are used together in different phases of a project.
As a rule of thumb, libraries tend to emphasize abstract dependencies (but can still have concrete dependencies for
the development environment), while applications tend to rely on concrete dependencies (but can still have abstract
dependencies specially if they are intended to be distributed via PyPI, e.g. command line tools and auxiliary WSGI
apps/middleware to be mounted inside other domain-centric apps). For more information about this topic check Donald
Stuftt post.

Since PyScaffold aims the development of Python projects that can be easily packaged and distributed using the standard
PyPI and pip flow, we adopt the specification of abstract dependencies using setuptools’ install_requires.
This basically means that if PyScaffold generated projects specify dependencies inside the setup.cfg file (using
general version ranges), everything will work as expected.

17


https://towardsdatascience.com/virtual-environments-104c62d48c54
https://caremad.io/posts/2013/07/setup-vs-requirement/
https://caremad.io/posts/2013/07/setup-vs-requirement/
https://setuptools.pypa.io/en/stable/userguide/dependency_management.html

PyScaffold Documentation, Release 4.2.3

4.1.2 Test Dependencies

While specifying the final dependencies for packages is pretty much straightforward (you just have to use
install_requires inside setup.cfg), dependencies for running the tests can be a little bit trick.

Historically, setuptools provides a tests_require field that follows the same convention as install_requires,
however this field is not strictly enforced, and setuptools doesn’t really do much to enforce the packages listed will
be installed before the test suite runs.

PyScaffold’s recommendation is to create a testing field (actually you can name it whatever you want, but let’s be
explicit!) inside the [options.extras_require] section of setup.cfg. This way multiple test runners can have a
centralised configuration and authors can avoid double bookkeeping.

If you use tox (recommended), you can list testing under the the extras configuration field option (PyScaffold
template for tox.ini already takes care of this configuration for you).

If running pytest directly, you will have to install those dependencies manually, or do a editable install of your package
with pip install -e .[testing].

Tip: If you prefer to use just tox and keep everything inside tox.ini, please go ahead and move your test dependen-
cies. Every should work just fine :)

Note: PyScaffold strongly advocates the use of test runners to guarantee your project is correctly packaged/works
in isolated environments. New projects will ship with a default tox.ini file that is a good starting point, with a few
useful tasks. Run tox -av to list all the available tasks.

4.1.3 Basic Virtualenv

As previously mentioned, PyScaffold will get you covered when specifying the abstract or test dependencies of your
package. We provide sensible configurations for setuptools and tox out-of-the-box. In most of the cases this is
enough, since developers in the Python community are used to rely on tools like virtualenv and have a workflow that
take advantage of such configurations. As an example, you could do:

pip install pyscaffold

putup myproj

cd myproj

virtualenv .venv

OR python -m venv .venv

source .venv/bin/activate

pip install -U pip setuptools setuptools_scm tox
. edit setup.cfg to add dependencies ...

pip install -e .

tox

A A T A A T A e e

However, someone could argue that this process is pretty manual and laborious to maintain specially when the developer
changes the abstract dependencies.

PyScaffold can alleviate this pain a little bit with the venv extension:

$ putup myproj --venv --venv-install PACKAGE
# Is equivalent of running:
#

(continues on next page)

18 Chapter 4. Advanced Usage & Features



https://tox.wiki/en/stable/config.html#conf-extras
https://virtualenv.pypa.io/en/stable/

PyScaffold Documentation, Release 4.2.3

(continued from previous page)

putup myproj

cd myproj

virtualenv .venv OR python -m venv .venv
pip install PACKAGE

H R R R

But it is still desirable to keep track of the version of each item in the dependency graph, so the developer can have
environment reproducibility when trying to use another machine or discuss bugs with colleagues.

In the following sections, we describe how to use a few popular command line tools, supported by PyScaffold, to tackle
these issues.

Tip: When called with the --venv option, PyScaffold will try first to use virtualenv (there are some advantages on
using it, such as being faster), and if it is not installed, will fallback to Python stdlib’s venv. Please notice however that
even venv might not be available by default in your system: some OS/distributions split Python’s stdlib in several pack-
ages and require the user to explicitly install them (e.g. Ubuntu will require you to do apt install python3-venv).
If you run into problems, try installing virtualenv and run the command again.

4.1.4 Integration with Pipenv

We can think in Pipenv as a virtual environment manager. It creates per-project virtualenvs and generates a Pipfile.
lock file that contains a precise description of the dependency tree and enables re-creating the exact same environment
elsewhere.

Pipenv supports two different sets of dependencies: the default one, and the dev set. The default set is meant to store
runtime dependencies while the dev set is meant to store dependencies that are used only during development.

This separation can be directly mapped to PyScaffold strategy: basically the default set should mimic the
install_requires option in setup.cfg, while the dev set should contain things like tox, sphinx, pre-commit,
ptpython or any other tool the developer uses while developing.

Tip: Test dependencies are internally managed by the test runner, so we don’t have to tell Pipenv about them.

The easiest way of doing so is to add a -e . dependency (in resemblance with the non-automated workflow) in the
default set, and all the other ones in the dev set. After using Pipenv, you should add both Pipfile and Pipfile.lock
to your git repository to achieve reproducibility (maintaining a single Pipfile.lock shared by all the developers in
the same project can save you some hours of sleep).

In a nutshell, PyScaffold+Pipenv workflow looks like:

$ pip install pyscaffold pipenv

§ putup myproj

$ cd myproj

# ... edit setup.cfg to add dependencies ...

$ pipenv install

$ pipenv install -e . # proxy setup.cfg install_requires

$ pipenv install --dev tox sphinx # etc

$ pipenv run tox # use ‘pipenv run’ to access tools inside env
$ pipenv lock # to generate Pipfile.lock

$

git add Pipfile Pipfile.lock

After adding dependencies in setup.cfg, you can run pipenv update to add them to your virtual environment.

4.1. Dependency Management 19



https://virtualenv.pypa.io/en/stable/
https://docs.python.org/3.8/library/venv.html#module-venv
https://docs.python.org/3.8/library/venv.html#module-venv
https://virtualenv.pypa.io/en/stable/
https://pypi.org/project/pipenv/

PyScaffold Documentation, Release 4.2.3

Warning: Experimental Feature - Pipenv is still a young project that is moving very fast. Changes in the way
developers can use it are expected in the near future, and therefore PyScaffold support might change as well.

4.1.5 Integration with pip-tools

Contrary to Pipenv, pip-tools does not replace entirely the aforementioned “manual” workflow. Instead, it provides
lower level command line tools that can be integrated to it, in order to achieve better reproducibility.

The idea here is that you have two types files describing your dependencies: *requirements.in and
*requirements.txt. The .in files are the ones used to list abstract dependencies, while the . txt files are generated
by running pip-compile.

Again the easiest way of having the requirements.in file to mimic setup.cfg’ install_requires is to add
something like -e . toit.

Warning: For the time being adding -e file:. is a working solution that is tested by pip-tools team (-e
. will generate absolute file paths in the compiled file, which will make it impossible to share). However this
situation might change in the near future. You can find more details about this topic and monitor any changes in
https://github.com/jazzband/pip-tools/issues/204.

When using -e file:. in your requirements.in file, the compiled requirements.txt needs to be installed
via pip-sync instead of pip install -r requirements.txt

You can also create multiple environments and have multiple “profiles”, by using different files, e.g.
dev-requirements.in or ci-requirements. in, but keeping it simple and using requirements.in to represent
all the tools you need to run common tasks in a development environment is a good practice, since you can omit the
arguments when calling pip-compile and pip-sync. After all, if you need to have a separated test environment you
can use tox, and the minimal dependencies of your packages are already listed in setup.cfg.

Note: The existence of a requirements. txt file in the root of your repository does not imply all the packages listed
there will be considered direct dependencies of your package. This was valid for older versions of PyScaffold ( 3), but
is no longer the case. If the file exists, it is completely ignored by PyScaffold and setuptools.

A simple a PyScaffold + pip-tools workflow looks like:

$ putup myproj --venv --venv-install pip-tools setuptools_scm && cd myproj

$ source .venv/bin/activate

# . edit setup.cfg to add dependencies ...

$ echo '"-e file:.' > requirements.in

$ echo -e 'tox\nsphinx\nptpython' >> requirements.in # etc

$ pip-compile

$ pip-sync

$ tox

# ... do some debugging/live experimentation running Python in the terminal
$ ptpython

$ git add *requirements.{in,txt}

After adding dependencies in setup.cfg (or to requirements.in), you can run pip-compile && pip-sync to
add them to your virtual environment. If you want to add a dependency to the dev environment only, you can also:

20 Chapter 4. Advanced Usage & Features



https://pypi.org/project/pipenv/
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools/issues/204
https://github.com/jazzband/pip-tools

PyScaffold Documentation, Release 4.2.3

$ echo "mydep>=1.2,<=2" >> requirements.in &_& pip-compile && pip-sync

Warning: Experimental Feature - the methods described here for integrating pip-tools and PyScaffold in a
single workflow are tested to a certain degree and not considered stable. The usage of relative paths in the compiled
requirements. txt file is a feature that have being several years in the making and still is under discussion. As
everything in Python’s packaging ecosystem right now, the implementation, APIs and specs might change in the
future so it is up to the user to keep an eye on the official docs and use the logic explained here to achieve the
expected results with the most up-to-date API pip-tools have to offer.

The issue https://github.com/jazzband/pip-tools/issues/204 is worth following.

If you find that the procedure here no longer works, please open an issue on https://github.com/pyscaffold/
pyscaffold/issues.

4.1.6 Integration with conda

Conda is an open-source package manager very popular in the Python ecosystem that can be used as an alternative to
pip. Itis especially helpful when distributing packages that rely on compiled libraries (e.g. when you need to use some
C code to achieve performance improvements) and uses Anaconda as its standard repository (the PyPI equivalent in
the conda world).

The main advantage of conda compared to virtualenv/venv based tools is that it unifies several different tools and
has a deeper isolation than the pip package manager. For instance conda allows you to create isolated environments by
specifying also the Python version and even system libraries like glibc. In the pip ecosystem, one needs a tool like
pyenv to choose the Python version and the installation of system libraries besides the current ones is not possible at
all.

Note:  Unfortunately, since conda environments are more complex and feature-rich than the ones produced by
virtualenv/venv based tools, package installations usually take longer. If all your dependencies are pure Python
packages and you don’t need to use any compiled libraries, virtualenv/venv might provide a faster dev experience.

To use conda with a project setup generated by PyScaffold just:

1. Create a file environment.yml, e.g. like this example for data science projects. Note that name:
my_conda_env defines the name of the environment. Also note that besides the conda dependencies you can
still add pip-installable packages by adding - pip as dependency and a section defining additional packages as
well as the project setup itself:

- pip:
- -e .
- other-pip-based-package

This will install your project as well as other-pip-based-package within the conda environment. Be careful
though that some pip-based packages might not work perfectly within a conda environment but this concerns only
certain packages that tamper with the environment itself like tox for instance. As a rule of thumb, always define
a requirement as conda package if available and only resort to pip packages if not available as conda package.

2. Create an environment based on this file with:

conda env create -f environment.yml

4.1. Dependency Management 21


https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools
https://github.com/jazzband/pip-tools/issues/204
https://github.com/pyscaffold/pyscaffold/issues
https://github.com/pyscaffold/pyscaffold/issues
https://docs.conda.io/en/latest/
https://pip.pypa.io/en/stable/
https://docs.anaconda.com/anacondaorg/
https://pypi.org/
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
https://virtualenv.pypa.io/en/stable/
https://docs.python.org/3/library/venv.html
https://docs.conda.io/en/latest/
https://pip.pypa.io/en/stable/
https://github.com/pyenv/pyenv
https://docs.conda.io/en/latest/
https://virtualenv.pypa.io/en/stable/
https://docs.python.org/3/library/venv.html
https://virtualenv.pypa.io/en/stable/
https://docs.python.org/3/library/venv.html
https://docs.conda.io/en/latest/
https://github.com/pyscaffold/dsproject-demo/blob/master/environment.yml

PyScaffold Documentation, Release 4.2.3

Tip: Mamba is a new and much faster drop-in replacement for conda. For large environments, conda often
requires several minutes or hours to solve dependencies while mamba normally completes within seconds.

To create an environment with mamba, you can run the following command:

mamba env create -f environment.yml

3. Activate the environment with:

conda activate my_conda_env

You can read more about conda in the excellent guide written by WhiteBox. Also checkout the PyScaffold’s dsproject
extension that already comes with a proper environment.yml.

Creating a conda package

The process of creating conda packages consists basically in creating some extra files that describe general recipe to
build your project in different operating systems. These recipe files can in theory coexist within the same repository as
generated by PyScaffold.

While this approach is completely fine and works well, a package uploaded by a regular user to Anaconda will not
be available if someone simply try to install it via conda install <pkg name>. This happens because Anaconda
and conda are organised in terms of channels and regular users cannot upload packages to the default channel. Instead,
separated personal channels need to be used for the upload and explicitly selected with the -c <channel name> option
in conda install.

It is important however to consider that mixing many channels together might create clashes in dependencies (although
conda tries very hard to avoid clashes by using channel preference ordering and a clever resolution algorithm).

A general practice that emerged in the conda ecosystem is to organise packages in large communities that share a single
and open repository in Anaconda, that rely on specific procedures and heavy continuous integration for publishing
cohesive packages. These procedures, however, might involve creating a second repository (separated from the main
code base) to just host the recipe files. For that reason, PyScaffold does not currently generate conda recipe files when
creating new projects.

Instead, if you are an open-source developer and are interested in distributing packages via conda, our recommendation
is to try publishing your package on conda-forge (unless you want to target a specific community such as bioconda).
conda-forge is one of the largest channels in Anaconda and works as the central hub for the Python developers in the
conda ecosystem.

Once you have your package published to PyPI using the project generated by PyScaffold, you can create a conda-forge
feedstock' using a special tool called grayskull and following the documented instructions. Please make sure to check
PyScaffold community tips in discussion #422.

If you still need to use a personal custom channel in Anaconda, please checkout conda-build tutorials for further infor-
mation.

Tip: It is not strictly necessary to publish your package to Anaconda for your users to be able to install it if they
are using conda — pip install can still be used from a conda environment. However, if you have dependencies that
are also published in Anaconda and are not pure Python projects (e.g. nhumpy or matplotlib), or that rely on virtual
environments, it is generally advisable to do so.

! feedstock is the term used by conda-forge for the companion repository with recipe files

22 Chapter 4. Advanced Usage & Features


https://github.com/mamba-org/mamba
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
https://github.com/mamba-org/mamba
https://github.com/mamba-org/mamba
https://docs.conda.io/en/latest/
https://whiteboxml.com/blog/the-definitive-guide-to-python-virtual-environments-with-conda
https://pyscaffold.org/projects/dsproject/en/stable/
https://pyscaffold.org/projects/dsproject/en/stable/
https://docs.conda.io/en/latest/
https://docs.anaconda.com/anacondaorg/
https://docs.anaconda.com/anacondaorg/
https://docs.conda.io/en/latest/
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/channels.html
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
https://docs.anaconda.com/anacondaorg/
https://docs.conda.io/en/latest/
https://docs.conda.io/en/latest/
https://conda-forge.org/docs/maintainer/adding_pkgs.html
https://bioconda.github.io
https://conda-forge.org
https://docs.anaconda.com/anacondaorg/
https://docs.conda.io/en/latest/
https://pypi.org/
https://pypi.org/project/grayskull/
https://conda-forge.org/docs/maintainer/adding_pkgs.html#step-by-step-instructions
https://github.com/pyscaffold/pyscaffold//discussions/422
https://docs.anaconda.com/anacondaorg/
https://docs.conda.io/projects/conda-build/en/latest/user-guide/tutorials/index.html
https://docs.anaconda.com/anacondaorg/
https://docs.conda.io/en/latest/
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#using-pip-in-an-environment
https://docs.anaconda.com/anacondaorg/
https://realpython.com/python-virtual-environments-a-primer/
https://realpython.com/python-virtual-environments-a-primer/
https://conda-forge.org

PyScaffold Documentation, Release 4.2.3

4.2 Migration to PyScaffold

Migrating your existing project to PyScaffold is in most cases quite easy and requires only a few steps. We assume
your project resides in the Git repository my_project and includes a package directory my_package with your Python
modules.

Since you surely don’t want to lose your Git history, we will just deploy a new scaffold in the same repository and move
as well as change some files. But before you start, please make sure that your working tree is not dirty, i.e. all changes
are committed and all important files are under version control.

Let’s start:

1. Change into the parent folder of my_project and type:

putup my_project --force --no-skeleton -p my_package

in order to deploy the new project structure in your repository.

2. Now change into my_project and move your old package folder into src (if your existing project does not
follow a src layout yet):

git mv my_package/* src/my_package/

Use the same technique if your project has a test folder other than tests or a documentation folder other than
docs.

3. Use git status to check for untracked files and add them with git add.

4. Potentially, use git difftool to check all overwritten files for changes that need to be transferred. Most im-
portant is that all configuration that you may have done in setup.py by passing parameters to setup(...)
need to be moved to setup.cfg. You will figure that out quite easily by putting your old setup.py and the new
setup.cfg template side by side. Checkout the documentation of setuptools for more information about this
conversion. In most cases you will not need to make changes to the new setup. py file provided by PyScaffold.
The only exceptions are if your project uses compiled resources, e.g. Cython.

5. In order to check that everything works, run pip install . and tox -e build (or python -m build
--wheel after installing build). If those two commands don’t work, check pyproject.toml, setup.cfg,
setup.py as well as your package under src again. Were all modules moved correctly? Is there maybe some
__init__.py file missing? Be aware that projects containing a pyproject.toml file will build in a different,
and sometimes non backwards compatible, way. If that is your case, you can try to keep the legacy behaviour by
deleting pyproject.toml and building the distributions exclusively with setup.py. Please see our updating
guide for some extra steps you might want to execute manually. Finally, try also to run make -C docs html
and pytest (or preferably their tox equivalents) to check that Sphinx and PyTest run correctly.

4.3 Updating from Previous Versions

When updating a project generated with the same major version of PyScaffold', running putup --update should be
enough to get you going. However updating from previous major versions of PyScaffold will probably require some
manual adjustments. The following sections describe how to update from one major version into the following one.

Tip: Before updating make sure to commit all the pending changes in your repository. If something does not work

! PyScaffold uses 3 numbers for its version: MAJOR.MINOR.PATCH (when the numbers on the right are missing, just assume them as being 0), so
PyScaffold 3.1.2 has the same major version as PyScaffold 3.3.1, but not PyScaffold 4.

4.2. Migration to PyScaffold 23


https://blog.ionelmc.ro/2014/05/25/python-packaging/#the-structure
https://setuptools.pypa.io/en/stable/userguide/declarative_config.html

PyScaffold Documentation, Release 4.2.3

exactly how you expected after the update, please revise the changes using a diff and perform the necessary correc-
tions.

4.3.1 Updates from PyScaffold 2 to PyScaffold 3

Since the overall structure of a project set up with PyScaffold 2 differs quite much from a project generated with
PyScaffold 3 it is not possible to just use the --update parameter. Still with some manual efforts an update from
a scaffold generated with PyScaffold 2 to PyScaffold 3’s scaffold is quite easy. Assume the name of our project is
old_project with a package called old_package and no namespaces then just:

1) make sure your worktree is not dirty, i.e. commit all your changes,

2) runputup old_project --force --no-skeleton -p old_package to generate the new structure inplace
and cd into your project,

3) move with git mv old_package/* src/old_package/ --force your old package over to the new src
directory,

4) check git status and add untracked files from the new structure,

5) use git difftool to check all overwritten files, especially setup.cfg, and transfer custom configurations
from the old structure to the new,

6) check if python setup.py test sdist works and commit your changes.

4.3.2 Updates from PyScaffold 3 to PyScaffold 4
Most of the time, updating from PyScaffold 3 should be completely automatic. However, since in version 4 we have
adopted Python’s new standards for packaging (PEP 517/PEP 518), you might find the new build process incompatible.

If that is the case, you might want to try reverting to the legacy behaviour and preventing the build tools from using
isolated builds (PEP 517). That can be easily done by deleting the pyproject.toml file from your package root.

You will need, though, to manually follow a few extra steps to make sure everything works:

1) Remove PyScaffold from your build dependencies (setup_requires in setup.cfg) and add setuptools-scm.

Note: The use of setup_requires is discouraged. When updating to v4 PyScaffold will remove this field
automatically and transfer the dependencies to the pyproject.toml :: build-system.requires field,
which means you may need to manually place them back when deleting pyproject.toml. Alternatively you
can ditch setup_requires completely and rely on other tools like tox or make to build your project with the
correct dependencies in place inside a virtual environment. This have the advantage of increasing reproducibility.
With tox you can specify a build testenv with the skip_install option and the required build time dependencies
listed in deps.

2) Migrate any configuration options for tools that might be using pyproject.toml to alternative files. For exam-
ple if you have isort and coverage configurations in your pyproject.toml, you might want to rewrite them
in the .isort.cfg and .coveragerc files respectively.

3) Please open an issue with PyScaffold so we understand with kind of backward incompatibilities PEP 517 and
PEP 518 might be causing and try to help. Similarly you might also consider opening an issue with setuptools.

Warning: For the time being you can use the transitional --no-pyproject option, when running putup, but
have in mind that this option will be removed in future versions of PyScaffold.

24 Chapter 4. Advanced Usage & Features


https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0517/
https://pypi.org/project/setuptools-scm/
https://tox.wiki/en/stable/
https://www.gnu.org/software/make/manual/html_node/index.html
https://tox.wiki/en/stable/
https://tox.wiki/en/stable/config.html#conf-skip_install
https://pycqa.github.io/isort/docs/configuration/config_files
https://coverage.readthedocs.io/en/coverage-5.1/config.html
https://github.com/pyscaffold/pyscaffold/issues
https://www.python.org/dev/peps/pep-0517/
https://www.python.org/dev/peps/pep-0518/
https://github.com/pypa/setuptools/issues

PyScaffold Documentation, Release 4.2.3

PyScaffold 4 also adopts the PEP 420 scheme for implicit namespaces and will automatically migrate existing packages.
This is incompatible with the previously adopted pkg_resources methodology. Fortunately, this will not affect you if
you are not using namespaces, but in the case you are, installing a new PEP 420-compliant package in an environment
that already contains other packages with the same namespace but that use the pkg_resources methodology, will likely
result in errors (please check the official packaging namespace packages guides for more information).

To solve this problem you will need to either migrate the existing packages to PEP 420 or revert some specific config-
urations in setup.cfg after the update. In particular packages = find_namespace: should be converted back to
packages = find: in the [options] section (use a git difftool to help you with that). If using Sphinx for the
documentation, you can also remove the --implicit-namespaces option in the cmd_line_template variable in
the docs/conf. py file.

Tip: Existing regular Python files (or other directories containing Python files) that do not belong to the package
distribution but are placed inside the src folder (such as example files not meant to be packaged), can cause problems
when building your package.

Please move these files if necessary to their own separated folders (e.g. the docs folder or a new examples folder
in the root of the repository), or revert back to the pkg_resources implementation. Just have in mind that PyScaffold,
considers the src directory to be exclusively dedicated to store files meant to be distributed, and will rely on that
assumption on its future versions and updates.

4.4 Extending PyScaffold

PyScaffold is carefully designed to cover the essentials of authoring and distributing Python packages. Most of time,
tweaking putup options is enough to ensure proper configuration of a project. However, for advanced use cases PyScaf-
fold can be extended at runtime by other Python packages, providing a deeper level of programmability and customiza-
tion.

From the standpoint of PyScaffold, an extension is just an class inheriting from Extension overriding and implement-
ing certain methods that allow the manipulation of a in-memory project structure representation via PyScaffold’s
internal action pipeline mechanism. The following sections describe these two key concepts in detail and present a
comprehensive guide about how to create custom extensions.

Tip: A perfect start for your own custom extension is the extension custom_extension for PyScaffold. Just install it
with pip install pyscaffoldext-custom-extension and then create your own extension template with putup
--custom-extension pyscaffoldext-my-own-extension.

4.4.1 Project Structure Representation

Each Python package project is internally represented by PyScaffold as a tree data structure, that directly relates to
a directory entry in the file system. This tree is implemented as a simple (and possibly nested) dict in which keys
indicate the path where files will be generated, while values indicate their content. For instance, the following dict:

{
"folder": {
"file.txt": "Hello World!",
"another-folder": {
"empty-file.txt":

}

(continues on next page)

4.4. Extending PyScaffold 25



https://www.python.org/dev/peps/pep-0420/
https://setuptools.pypa.io/en/stable/pkg_resources.html
https://www.python.org/dev/peps/pep-0420/
https://setuptools.pypa.io/en/stable/pkg_resources.html
https://packaging.python.org/guides/packaging-namespace-packages/
https://www.python.org/dev/peps/pep-0420/
https://www.sphinx-doc.org/en/master/
https://setuptools.pypa.io/en/stable/pkg_resources.html
https://github.com/pyscaffold/pyscaffoldext-custom-extension
https://docs.python.org/3.8/library/stdtypes.html#dict

PyScaffold Documentation, Release 4.2.3

(continued from previous page)

represents a project directory in the file system that contains a single directory named folder. In turn, folder contains
two entries. The first entry is a file named file.txt with content Hello World! while the second entry is a sub-
directory named another-folder. Finally, another-folder contains an empty file named empty-file.txt.

Note: Changed in version 4.0: Prior to version 4.0, the project structure included the top level directory of the project.
Now it considers everything under the project folder.

Additionally, tuple values are also allowed in order to specify a file operation (or simply file op) that will be used to
produce the file. In this case, the first element of the tuple is the file content, while the second element will be a function
(or more generally a callable object) responsible for writing that content to the disk. For example, the dict:

from pyscaffold.operations import create

{
"src": {
"namespace": {
"module.py": ('print("Hello World!")', create)

}

represents a src/namespace/module.py file, under the project directory, with content print("Hello World!"),
that will written to the disk. When no operation is specified (i.e. when using a simple string instead of a tuple),
PyScaffold will assume create by default.

Note: The create function simply creates a text file to the disk using UTF-8 encoding and the default file permissions.
This behaviour can be modified by wrapping create within other functions/callables, for example:

from pyscaffold.operations import create, no_overwrite

{"file": ("content", no_overwrite(create))}

will prevent the file to be written if it already exists. See pyscaffold.operations for more information on how
to write your own file operation and other options.

Finally, while it is simple to represent file contents as a string directly, most of the times we want to customize them
according to the project parameters being created (e.g. package or author’s name). So PyScaffold also accepts string.
Template objects and functions (with a single dict argument and a str return value) to be used as contents. These
templates and functions will be called with PyScaffold's options when its time to create the file to the disk.

Note: string.Template objects will have safe_substitute called (not simply substitute).

This tree representation is often referred in this document as project structure or simply structure.

26 Chapter 4. Advanced Usage & Features



https://docs.python.org/3.8/library/functions.html#callable
https://docs.python.org/3.8/library/string.html#string.Template
https://docs.python.org/3.8/library/string.html#string.Template
https://docs.python.org/3.8/library/stdtypes.html#dict
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/string.html#string.Template
https://docs.python.org/3.8/library/string.html#string.Template.safe_substitute
https://docs.python.org/3.8/library/string.html#string.Template.substitute

PyScaffold Documentation, Release 4.2.3

4.4.2 Action Pipeline

PyScaffold organizes the generation of a project into a series of steps with well defined purposes. As shown in the
figure below, each step is called action and is implemented as a simple function that receives two arguments: a project
structure and a dict with options (some of them parsed from command line arguments, other from default values).

An action MUST return a tuple also composed by a project structure and a dict with options. The return values, thus,
are usually modified versions of the input arguments. Additionally an action can also have side effects, like creating
directories or adding files to version control. The following pseudo-code illustrates a basic action:

def action(project_structure, options):
new_struct, new_opts = modify(project_structure, options)
some_side_effect()
return new_struct, new_opts

The output of each action is used as the input of the subsequent action, forming a pipeline. Initially the structure argu-
ment is just an empty dict. Each action is uniquely identified by a string in the format <module name>:<function
name>, similarly to the convention used for a setuptools entry point. For example, if an action is defined in the
action function of the extras.py file that is part of the pyscaffoldext.contrib project, the action identifier
is pyscaffoldext.contrib.extras:action.

By default, the sequence of actions taken by PyScaffold is:
1. pyscaffold.actions:get_default_options
. pyscaffold.actions:verify_options_consistency
. pyscaffold.structure:define_structure

. pyscaffold.actions:verify_project_dir

2
3
4
5. pyscaffold.update:version_migration
6. pyscaffold.structure:create_structure
7. pyscaffold.actions:init_git
8. pyscaffold.actions:report_done
(as given by pyscaffold.actions.DEFAULT)

The project structure is usually empty until define_structure This action just loads the in-memory dict represen-
tation, that is only written to disk by the create_structure action.

Note that, this sequence varies according to the command line options. To retrieve an updated list, please use putup
--list-actions or putup --dry-run.

4.4.3 Creating an Extension

In order to create an extension it is necessary to write a class that inherits from Extension and implements the method
activate that receives a list of actions (interpret this argument as a sequence of actions to be executed, or pipeline),
registers a custom action that will be called later and returns a modified version of the list of actions:

from pyscaffold import actions
from pyscaffold.extensions import Extension

class MyExtension(Extension):

(continues on next page)

4.4. Extending PyScaffold 27



https://docs.python.org/3.8/library/stdtypes.html#dict
https://docs.python.org/3.8/library/stdtypes.html#dict
https://docs.python.org/3.8/library/stdtypes.html#dict
https://setuptools.pypa.io/en/stable/userguide/entry_point.html
https://docs.python.org/3.8/library/stdtypes.html#dict

PyScaffold Documentation, Release 4.2.3

(continued from previous page)

e

Help text on commandline when running putup -h"""

def activate(self, pipeline):
"""Activate extension

Args:
pipeline (list): list of actions to perform

Returns:
list: updated list of actions
pipeline = actions.register(pipeline, self.action, after="create_structure")
pipeline = actions.unregister(pipeline, "init_git")
return actions

def action(self, struct, opts):
"""Perform some actions that modifies the structure and options

Args:
struct (dict): project representation as (possibly) nested
robj:'dict’.
opts (dict): given options, see :obj:'create_project®' for
an extensive list.

Returns:
new_struct, new_opts: updated project representation and options

o

return new_struct, new_opts

Tip: The register and unregister methods implemented in the module pyscaffold. actions basically cre-
ate modified copies of the action list by inserting/removing the specified functions, with some awareness about their
execution order.

Action List Helper Methods

As implied by the previous example, the pyscaffold.actions module provides a series of useful functions and
makes it easier to manipulate the action list, by using register and unregister.

Since the action order is relevant, the first function accepts special keyword arguments (before and after) that should
be used to place the extension actions precisely among the default actions. The value of these arguments can be
presented in 2 different forms:

actions.register(action_sequence, hookl, before="define_structure")
actions.register(action_sequence, hook2, after="pyscaffold.structure:create_structure")

The first form uses as a position reference the first action with a matching name, regardless of the module. Accordingly,
the second form tries to find an action that matches both the given name and module. When no reference is given,
register assumes as default position after="pyscaffold.structure:define_structure"”. This position is
special since most extensions are expected to create additional files inside the project. Therefore, it is possible to easily
amend the project structure before it is materialized by create_structure.

28 Chapter 4. Advanced Usage & Features




PyScaffold Documentation, Release 4.2.3

The unregister function accepts as second argument a position reference which can similarly present the module
name:

actions.unregister(action_sequence, "init_git")
actions.unregister(action_sequence, "pyscaffold.api:init_git")

Note: These functions DO NOT modify the actions list, instead they return a new list with the changes applied.

Tip: For convenience, the functions register and unregister are aliased as instance methods of the Extension
class.

Therefore, inside the activate method, one could simply call action_sequence = self.
register(action_sequence, self.my_action).

Structure Helper Methods
PyScaffold also provides extra facilities to manipulate the project structure. The following functions are accessible
through the structure module:

* merge

e ensure

e reject

* modify

The first function can be used to deep merge a dictionary argument with the current representation of the to-be-generated
directory tree, automatically considering any file op present in tuple values. On the other hand, the second and third
functions can be used to ensure a single file is present or absent in the current representation of the project structure,
automatically handling parent directories. Finally, modify can be used to change the contents of an existing file in the
project structure and/or the assigned file operation (for example wrapping it with no_overwrite, skip_on_update
or add_permissions).

Note: Similarly to the actions list helpers, these functions also DO NOT modify the project structure. Instead they
return a new structure with the changes applied.

The following example illustrates the implementation of a AwesomeFiles extension which defines the
define_awesome_files action:

from pathlib import Path
from string import Template
from textwrap import dedent

from pyscaffold import structure
from pyscaffold.extensions import Extension
from pyscaffold.operations import create, no_overwrite, skip_on_update

def my_awesome_file(opts):
return dedent(

(continues on next page)

4.4. Extending PyScaffold 29




PyScaffold Documentation, Release 4.2.3

(continued from previous page)

min\
__author__ = "{author}"
__copyright__ = "{author}"
__license__ = "{license}"

def awesome():

return "Awesome!"
et format (

**opts

MY_AWESOME_TEST = Template(
miny
import pytest
from ${qual_pkg}.awesome import awesome

def test_awesome():
assert awesome() == "Awesome!"

o

)

class AwesomeFiles(Extension):
"""Adding some additional awesome files

e

def activate(self, actions):
return self.register(actions, self.define_awesome_files)

def define_awesome_files(self, struct, opts):
struct = structure.merge(

struct,
{
"src": {
opts["package"]: {"awesome.py": my_awesome_file},
1,
"tests": {
"awesome_test.py": (MY_AWESOME_TEST, no_overwrite(create)),
"other_test.py": ("# not so awesome", no_overwrite(create)),
1,
1,

)
struct[".python-version"] = ("3.6.1", no_overwrite(create))

for filename in ["awesome_filel", "awesome_file2"]:
struct = structure.ensure(
struct,
f"src/{opts['package']}/{filename}",
content="AWESOME!",
file_op=skip_on_update(create),

(continues on next page)

30 Chapter 4. Advanced Usage & Features




PyScaffold Documentation, Release 4.2.3

(continued from previous page)

# The second argument is the file path, represented by a
# os.PathLike object or string.
# Alternatively in this example:
# Path("src", opts['"package"], filename),
)

# The ‘reject’ can be used to avoid default files being generated.
struct = structure.reject(struct, Path("src", opts['package"], "skeleton.py"))

# ‘modify" can be used to change contents in an existing file
# and/or change the assigned file operation
def append_pdb(prev_content, prev_op):
return (prev_content + "\nimport pdb", skip_on_update(prev_op))

struct = structure.modify(struct, "tests/other_test.py", append_pdb)

# It is import to remember the return values
return struct, opts

As shown by the previous example, the operations module also contains file operation modifiers that can be used to
change the assigned file op. These modifiers work like standard Python decorators: instead of being a file op themselves,
they receive a file operation as argument and return a file operation, and therefore can be used to wrap the original file
operation and modify its behaviour.

Tip: By default, all the file op modifiers in the pyscaffold.operations package don’t even need an explicit
argument, when called with zero arguments create is assumed.

no_overwrite avoids an existing file to be overwritten when putup is used in update mode. Similarly,
skip_on_update avoids creating a file from template in update mode, even if it does not exist. On the other hand,
add_permissions will change the file access permissions if it is created or already exists in the disk.

Note: See pyscaffold.operations for more information on how to write your own file operation or modifiers.

Activating Extensions

PyScaffold extensions are not activated by default. Instead, it is necessary to add a CLI option to do it. This is possible by
setting up a setuptools entry point under the pyscaffold.cli group. This entry point should point to our extension
class, e.g. AwesomeFiles like defined above. If you for instance use a scaffold generated by PyScaffold to write a
PyScaffold extension (we hope you do ;-), you would add the following to the options.entry_points section in
setup.cfg:

[options.entry_points]
pyscaffold.cli =
awesome_files = your_package.your_module:AwesomeFiles

Tip: In order to guarantee consistency and allow PyScaffold to unequivocally find your extension, the name of the
entry point should be a “underscore” version of the name of the extension class (e.g. an entry point awesome_files
for the AwesomeFiles class). If you really need to customize that behaviour, please overwrite the name property of

4.4. Extending PyScaffold 31



https://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators
https://setuptools.pypa.io/en/stable/userguide/entry_point.html

PyScaffold Documentation, Release 4.2.3

your class to match the entry point.

By inheriting from pyscaffold. extensions.Extension, a default CLI option that already activates the extension
will be created, based on the dasherized version of the name in the setuptools entry point. In the example above, the
automatically generated option will be --awesome-files.

For more sophisticated extensions which need to read and parse their own command line arguments it is necessary to
override augme